

Yori: a new, highly customizable set of tools for Level-3 data production

P. Veglio, R. Holz, L. Gumley, S. Dutcher, G. Quinn and B. Flynn Space Science and Engineering Center, University of Wisconsin - Madison

Yori provides a set of tools to grid geophysical variables into Level-3 products regardless of the sensor used. The wide variety of options available within the software allows the users to customize the Level-3 products to meet their needs.

This software package has been developed under the NASA Atmosphere SIPS to support the various science teams.

How Yori Works

The gridding workflow with Yori is structured in three steps:

- a. the user prepares the configuration and input files
- b. the granules are gridded according to the user's instructions by yori-grid
- c. the gridded granules are aggregated into the Level-3 products for the desired time period using yori-aggr.

Setting up Yori

- the configuration file interfaces the user with Yori
- contains all the instructions to tell the software how to operate
- it is possible to define grid resolution, output variable names, attributes and more
- data can be filtered using "masks" (i.e. binary arrays that instruct the code to keep/discard a given pixel)


```
Group "Cloud_Optical_Thickness_Combined"
variables:
  double Pixel_Counts(longitude=360, latitude=180);
    :_FillValue = -999.0; // double
  double Mean(longitude=360, latitude=180);
     :long_name = "Cloud Optical Thickness for Combined Phase Clouds
    :units = "none";
    :_FillValue = -999.0; // double
  double Sum_Squares(longitude=360, latitude=180);
    :_FillValue = -999.0; // double
  double Sum(longitude=360, latitude=180);
    :_FillValue = -999.0; // double
  double Standard_Deviation(longitude=360, latitude=180);
     :long_name = "Cloud Optical Thickness for Combined Phase Clouds
    :units = "none";
    :_FillValue = -999.0; // double
:long_name = "Cloud Optical Thickness for Combined Phase Clouds (Pri
:_FillValue = -999.0; // double
:valid_min = 0.0; // double
:valid_max = 150.0; // double
:scale_factor = 1.0; // double
:add_offset = 0.0; // double
```

Output Data Structure:

- by default Yori computes *Mean*, *Standard Deviation*, *Pixel Count*, *Sum* and *Sum Squares* of each grid box for any input variable. An example is shown here on the right.
- In addition, it is possible to compute also *Histograms* and *Joint Histograms* for each grid box
- all these quantities are saved in groups to keep things clean when the number of variables increases

Features

- highly customizable by the user
- doesn't depend on a specific sensor
- output files are cf-compliant, so they can be easily visualized in tools such as Panoply
- naming is consistent with MODIS L3 to facilitate transition to VIIRS L3
- options are provided to deal with the international date line during daily aggregations
- easy data filtering using "masks"
- aggregation can be repeated on already aggregated files (e.g. from daily to monthly)

Online documentation available at: https://sips.ssec.wisc.edu/docs/yori.html